
The study fs bosomed with si~~e-18yer~ ccmvex, isotropic and 8n~~~~& shells whW 
permit a breakdown of the state of stress into a momentless one and ~ounda~ effects 
[l and ‘21,; an approximate value is obtained from the normal deflection Utat the point 
of application of a ~n~ntra~d load acting in the direction normal to the middle sur- 
face. The solution is obtained by asymptotic integration of the equations of shell theory, 
whose application to the effects of concentrated loads on isotropic shells was developed 
in [3]. 

f, ~~~au~~~~~~ rhrfl f~snerrt ~~~~~~~o~~~* Assume that the solution of 
the membrane theory for a shell with a concentrated load is known (e. g. for shells 
described by second order surfaces the result is easily obtained by the method developed 
in [If At the point of a~F~ca~~ of the load, these solutions have singularfties of a 
higher order than a general shell theory with momen= would have [4$ The incompati- 
bility thus obtained, as shown in [3]. may be eliminated with the aid of rapidly varying 
solutions of the boundary effect type, which are of a local character, i.e. their essentia! 
contribution is confined to a sufficiently small neigh~rh~ of the applied load. Such 
sofutions for isotropic shells were obtained in p], and were called local, These will be 
generalized here to the anisotropic shell, It is known Q] that the equation for rapidly 
varying solutions coincides wfth the equation for a sloping shell. However, it should be 
recalled that in obtaining the rapidly v~~~~g sohftions it is necessary to neglect the 
slowly varying solutions. Let us write this equation @] 
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curvature of the surface. Note that A, B, Al , Ra and BQ are either constants or slowly 
varying functions which ‘may be taken as constants with th&r values given at the point 

of application of the load. Then (1) may be reduced to the single Eq. 

L, (&k) L, (&k) w + A%w = LL (&c) 2 (2) 

For a normal, concentrated load P, the corresponding expression for zis given by [4] 

z = P (AR)-’ 8 (cc,, PO) 

Here, 6 is the Dirac delta function. 
We will construct a local solution to this equation, following the method in D]. Intro- 

duce the nondimensional coordinates x and I/ 

2 = A (a - aa) R;“’ Ri”‘, y = B (p - PO) l?p i?,-“a 

Then, as shown in [5], 2 takes the form 

Z = PR1-l Rz-’ 6 

The transformed Eq. (2) now becomes 
R,lR,-l L,‘L2’w + A& = PL1’6 

Here, _&‘, La’ and A, are the transformed operators 

(31 

LI’ = RlaRz2L~ (Di,), L’s= Rl=RaaL (Aik), 
aa a= 

&=$.jg+by+ 
RI‘ ‘It 

aa = b-2 = ?ii; 
( 1 

To obtain a local solution, it is convenient to shift to a plane wave form in terms of 5 , 
since the solution to (3) may then be sought in the form of functions of 5 

E=xcoscp+ysin~=rcos(~--cPo), x = r cos(po, y = r sinTo 

where cp is a parameter whose range is [0, 2Tr). Indeed, the 6 function has a plane 
wave representation 153 2x 

1 

s 

a 
6=-&i 4p 

0 

Substituting the above expression into (3). we obtain -.. 

& L1’La’w + A&J = - & Jq$ 
0 

We seek a solution to this equation in the form 
ax 

w = @Pi)@ 
5 (4) 

Then @ must satisfy the ordinary differintial equation with constant coefficients 

da0 d’@ 
ha- 

Plz da 1 
1 dE8+ta~=-&i~~ 

wa 
- hl= RIRa ’ 

t = aa CO@ Q + br sins cp !5) 

I, = D,, co&p +.4D,, cod Q sincp + 2 (D,, + 2D,,) sins cp cc& Q + 

+4D,, cos Q sin” cp + Dzz sin’ cp 

I¶ - An co# Q - %i2, toss Q sin Q + (Aza + 4A,) COS’ Q Sin’ Q - 

-2& cos Q sin’ q + AlI sin‘ Q 

The solution to (5) may be represented as follows : 
da@ 

where @ is a solution to 

@=fPk- 

da@ d’W 1 
hg dEa + t* F = - - 4J@S2 

0% 

(7) 
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An equation of similar form was investigated in p], and it was shown how one may 
obtain a local solution from the general solution. The difference lies only in the fact 
that here, hl depends on cp whereas in [3] h.1 was constant. The solution to p] is equal 

to the sum of solutions to the following Eqs. (this may be verified by substitution) : 

(8) 

Eq. (7) has been decomposed into two : the first defines a slowly varying solution; the 

second, a rapidly varying solution. The second solution, which decreases for 5 -r*w , 
has the form 

mi’ = & In1 [e-‘Ei (2) + e”Ei (--z)]. ,I 7 (1 + i) i&j”‘i; 

The local UJ displacement, which will be denoted by wo3 as in [S] and which corre- 

sponds to @11 . nas the form (according to (6) and (4)) 
2:. 

The solution (9) decreases with an increase in distance from the point (X= 0, y= 0). 

The complete shell deflection consists of the combination of the membrane solution 

plus wo3 . We will obtain its value at the point of application of the load. 

The integrand in (9) may be transformed with the aid of (8) into 
2: 

WQS = - P 
” -t218 

11 12 
hl” (IV--- 4twq2 dT Ii 

0 

(10) 

It is known that the deflection under a concentrated load acting in a direction normal 
to the middle surface is finite. For isotropic shells, this was shown, for example, in [4] . 
The assertion holds for anisotropic shells as well. The deflection w” obtained from the 

membrane theory is infinite, with a singularity of order (l/?). This may be shown with 
the aid of (3). Setting the shell thickness h = 0 in (3) corresponds to setting the operator 

L1 = 0, i.e. the resultant equation corresponds to the membrane theory 
Alaw = P&6 (12) 

The principal singularity of w o in the neighborhood of the singular point may be 

obtained by the previously discussed method of plane waves. We cite the final result 
7.r. 2x 

P 
W%--G 

’ lzdq s P ’ la dv -___- pp - 4nw s ta co9 ((p --cpQ) 
0 0 

(12) 

Such is the principal singularity of the membrane theory. It can be seen that upon 

combining with the local solution (lo), this singularity is eliminated 

2n 

Since the general deflection is finite, all singularities of the membrane solution which 
yield an infinite deflection must-be eliminated by combining with the local solution. 
Here we show that the first approximation of the local solution eliminates the principal 
singularity of the membrane solution ; subsequent approximations eliminate the other 
singularities (of the type l/7 , In7 , etc.). 

The finite part of the total deflection consists of the sum of the finite parts of the 
membrane and local solutions. In order to obtain the finite part of (13), it is necessary 
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to expand it into a series in the neighborhood of the singular point, and the zeroth term 

of the series yields a first approximation of the finite part of the local solution. 
The series for the integrand in (13) for the case of (4 a /hP = 1) is giveh in 131. 

Utilizing this series expansion and adapting it to the case of R,/hl’ # 1 , we have 

0 0 0 

Here, Pi , Qi and Ai are homogeneous polinomials of degree t . Clearly, the only 
nonzero contribution is made by the first term of the third series. This essential term 

may be written as 

u@ (0, 0) = Ro = P (14) 

Here, the expressions for .&I , 1, and 6 are as given in (5). 

An estimate of the order of magnitude of the deflection in terms of the shell thick- 
ness h, = h.B, -“’ Rz”, obtained with the aid of (l), yields 

wo3 (0. 0) z ho-s 

An order of magnitude estimate of the finite part of the deflection given by the mem- 

brane theory may be obtained with the aid of (1) and (11). The result is w” (0, 0) _ ho-‘. 
This quantity is negligible in comparison with wo” . Postulating that subsequent terms 
in the approximation for the total deflection, as obtained by asymptotic integration, are 
smaller by a factor of ,& , as is the case in the boundary effect theory Cl], then (14) 

may be considered as the total deflection of an anisotropic shell subjected to a concen- 
trated load. An exact evaluation of the integral in (14) for the general case is cumber- 

some or even impossible. 

It should be noted that (14) is valid only if the applied load is sufficiently far from 
the shell boundary so that the boundary effect does not influence the deflection at the 

point of application of the load, and, in turn, the local solution is sufficiently small at 

the boundary so that the conditions at the boundary are not sufficiently effected to 
cause an additional change at the point of application of the load, Such a distance may 

be taken as two to three times the boundary layer. 
From the above discussion it is clear that, as a first approximation, the magnitude of 

the shell deflection is independent of the boundary conditions or boundary shape, and is 

determined by the radii of curvature at the point of application.of the load, the mate- 

rial constants of the shell and shell thickness, i. e. the shell material and local geometry. 
The deflection of a shell of variable thickness, if the thickness varies slowly, may be 

obtained from (14) by replacing h by h(~, , 8,) . 

2. 18otroplc shell. The magnitude of the deflection in this case is obtained 
as a particular case of the above. If the material is isotropic, (14) reduces to the follow- 

ing : 

?- v3 (1 - aa) RlRs do 
w(O,O)=4P 

s Ehzt 
0 



894 G. N. Chemyrbw 

The integral may be evaluated, and the deflection becomes 

w(O,O)=& )/3(1 - aa) RIRg 

As first approximation, this expression for the deflection coincides with the exact 

expression obtained in Is]. 

The author is grateful to A. L. Gol’denveizer for his comments on the work. 
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